Multi-Region Relaxed MHD: background

1. Motivated by a theorem of [O. Bruno & P. Laurence, Comm. Pure. Appl. Math. 19, 717 (1996)]
“We establish an existence result for 3D MHD equations for p # const. in tori without symmetry. More precisely,
our theorems insure the existence of sharp boundary solutions”

2. MRxMHD Energy Functional

=3[ (B a5 ([ amn-n)]

B -n=0o0ndR;
3. Implemented numerically in the Stepped Pressure Equilibrium Code (SPEC)
[S.R.Hudson, R.L.Dewar et al., Phys. Plasmas 19, 112502 (2012)]

4. SPEC to model self-organized helical states in RFP
[G.R.Dennis, S.R.Hudson et al., Phys. Rev. Lett. 111, 055003 (2013)]

5. MRxMHD & SPEC shown to recover ideal-MHD in limit
[G.R.Dennis, S.R.Hudson et al., Phys. Plasmas 20, 032509 (2013)]

6. MRxMHD extended to include flow
|G.R. Dennis, S.R.Hudson et al. Phys. Plasmas 21, 042501 (2014)]

7. MRxMHD extended to include flow, pressure anisotrophy
|G.R. Dennis, S.R.Hudson et al., Phys. Plasmas 21, 072512 (2014)]

8. SPEC used to compute singular current densities in ideal-MHD
[J. Loizu, S. Hudson et al., Phys. Plasmas 22, 022501 (2015)]



Multi-Region Relaxed MHD: recent theoretical developments
R.L. Dewar, M. Lingam

1.

“Variational formulation of relaxed and multi-region relaxed magnetohydrodynamics”
[R.L. Dewar, Z. Yoshida et al., J. Plasma Phys. 81, 515810604 (2015)]

“Multi-region relaxed Hall magnetohydrodynamics with flow”
[Manasvi Lingam, Hamdi M. Abdelhamid & Stuart R. Hudson, Phys. Plasmas 23, 082103 (2016)]

“Penetration of a resonant magnetic perturbation in an adiabatically rippled plasma slab”
[Robert L. Dewar, Stuart R. Hudson et al., Phys. Plasmas, submitted (2016)]

SPEC: recent applications/developments
J.Loizu, S.R. Hudson, S. Lazerson

“Existence of three-dimensional ideal-MHD equilibria with current sheets”
|J. Loizu, S.R. Hudson et al. Phys. Plasmas 22, 090704 (2015)]

“Pressure-driven amplification and penetration of resonant magnetic perturbations”
[J. Loizu, S.R. Hudson et al. Phys. Plasmas 23, 055703 (2016)]

2

“Verification of the ideal magnetohydrodynamic response at rational surfaces in the VMEC code
[S. Lazerson, J. Loizu et al. Phys. Plasmas 23, 012507 (2016)]

“Verification of the SPEC code in stellarator geometries”
[J. Loizu, S.R. Hudson & C. Niithrenberg, submitted, Phys. Plasmas, (2016)]



We have resolved a long-standing issue regarding perturbed,
“ideal” equilibria.
J. Loizu, S.R. Hudson et al.

Rational surfaces result in non-integrable current singularities . . .
Resolution: a “sheet current” arises that produces a discontinuous rotational-transform
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inside the resonant surface by pressure.
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The classes of general, tractable 3D MHD equilibria are:

P, pressure ¢ transform

1. Stepped-pressure equilibria,

i. Bruno & Laurence states . n

ii. extrema of MRxMHD energy functional

/3

iii. transform constrained discretely

iv. pressure discontinuity at ¢ = irrational

v. allows for islands, magnetic fieldline chaos

2. Stepped-transform equilibria,

i. introduced by Loizu, Hudson et al.

ii. extrema of ideal MHD energy functional

| I
iii. transform (almost) everywhere irrational
iv. arbitrary, smooth pressure
v. continuously-nested flux surfaces
3. Or, a combination of the above.
i. each can be computed using SPEC L
ii. suggests VMEC, NSTAB, should be modified I
to allow for discontinuous transform
Q. How does a state with continuous transform “ideally evolve”l | (% 77b4

into a 3D state with discontinuous transform?
implications for ideal stability if no accessible 3D state exists?



SPEC: ongoing development/applications
S.R. Hudson

1. RECENT code improvements:

i. finite-elements replaced by Chebshev polynomials
L,M,N

e.g. A= Z (a1, m nTi(s) cos(mb — nC)VO + B m, nTi(s) cos(mb — nl) V(]

I,m,n
ii. linearized equations
iii. Cartesian, cylindrical, toroidal geometry

iv. detailed online documentation,
http://w3.pppl.gov/ shudson/Spec/spec.html

v. easy-to-use, easy-to-edit, graphical user interface
2. ONGOING physics applications

i. WT7-X vacuum verification calculations, OP1.1 [completed]
ii. non-stellarator symmetric, e.g. DIIID, [completed)]

iii. free-boundary, [completed]
iv. including flow, anisotrophy, . . [under construction]

v. MRxMHD linear stability, [under construction]

B-n#0
on dDomain

DIID: SPEC cf. VMEC

SPEC cf. Biot Savart



A new approach to stellarator coil design
Caoxiang Zhu & S.R. Hudson

1. Previous methods (NESCOIL, COILOPT) vary angular location of coils on a “winding surface”,
but perhaps this is over-constrained.

2. We are investigating a new approach motivated by “The Fundamental Theorem of Curves” :
every regular curve in three-dimensional space, with non-zero curvature, has its shape (and size) completely
determined by its curvature and torsion,

Kn(s) = Z Kn.m exp(ims), Tn(s) = Z Tr.m €xXp(ims).

Let X = {kn m, Tn,m } be degrees of freedom of N discrete coils.

Alternatively, use Cartesian representation, e.g. X = {Zn,m, Yn,m, Zn,m}-

3. Coil geometry is varied to minimize

Flx] = / (B-n)*ds + wr, Z (length)? + other constraints
S n

4. Differential flow can find minimizing coil geometry

Ox

5. A parallelized, Newton method quickly finds extrema

6x = —V?*F ! . VF[x].

W?7-X coils produced by Knotopt (from initial circular coils)



Investigating the fractal structure of “Diophantine” equilibria
Brian Kraus, S.R. Hudson

1. To avoid pressure-driven, non-physical parallel currents near rational surfaces, require

p'(¥) = 0 where |¢(y)) —n/m| <€, Vn,m.

2. KAM theorem: “an irrational flux surface will exist (for small perturbations) if the rotational-transform is suf-
ficiently irrational, i.e. if ¢ satisfies a Diophantine condition”.
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